Relationships Among Tweets Related to Radiation: Visualization Using Co-Occurring Networks

نویسندگان

  • Ayako Yagahara
  • Keiri Hanai
  • Shin Hasegawa
  • Katsuhiko Ogasawara
چکیده

BACKGROUND After the Fukushima Daiichi nuclear accident on March 11, 2011, interest in, and fear of, radiation increased among citizens. When such accidents occur, appropriate risk communication must provided by the government. It is therefore necessary to understand the fears of citizens in the days after such accidents. OBJECTIVE This study aimed to identify the progression of people's concerns, specifically fear, from a study of radiation-related tweets in the days after the Fukushima Daiichi nuclear accident. METHODS From approximately 1.5 million tweets in Japanese including any of the phrases "radiation" (), "radioactivity" (), and "radioactive substance" () sent March 11-17, 2011, we extracted tweets that expressed fear. We then performed a morphological analysis on the extracted tweets. Citizens' fears were visualized by creating co-occurrence networks using co-occurrence degrees showing relationship strength. Moreover, we calculated the Jaccard coefficient, which is one of the co-occurrence indices for expressing the strength of the relationship between morphemes when creating networks. RESULTS From the visualization of the co-occurrence networks, we found high citizen interest in "nuclear power plant" on March 11 and 12, "health" on March 12 and 13, "medium" on March 13 and 14, and "economy" on March 15. On March 16 and 17, citizens' interest changed to "lack of goods in the afflicted area." In each co-occurrence network, trending topics, citizens' fears, and opinions to the government were extracted. CONCLUSIONS This study used Twitter to understand changes in the concerns of Japanese citizens during the week after the Fukushima Daiichi nuclear accident, with a focus specifically on citizens' fears. We found that immediately after the accident, the interest in the accident itself was high, and then interest shifted to concerns affecting life, such as health and economy, as the week progressed. Clarifying citizens' fears and the dissemination of information through mass media and social media can add to improved risk communication in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collection and Visualization of Dietary Behavior and Reasons for Eating Using Twitter

BACKGROUND Increasing an individual's awareness and understanding of their dietary habits and reasons for eating may help facilitate positive dietary changes. Mobile technologies allow individuals to record diet-related behavior in real time from any location; however, the most popular software applications lack empirical evidence supporting their efficacy as health promotion tools. OBJECTIVE...

متن کامل

Visual sentiment analysis of customer feedback streams using geo-temporal term associations

Large manufacturing companies frequently receive thousands of web surveys every day. People share their thoughts regarding a wide range of products, their features, and the service they received. In addition, more than 190 million tweets (small text Web posts) are generated daily. Both survey feedback and tweets are underutilized as a source for understanding customer sentiments. To explore hig...

متن کامل

A Visualization of Relationships Among Papers Using Citation and Co-citation Information

When we conduct scholarly surveys, we occasionally encounter difficulties in grasping the vast amount of related papers. Because academic papers have relationships, such as citing and cited relationships, we considered utilizing them for supporting scholarly surveys. In this paper, we propose a method for visualizing relationships among papers, and we construct paper graphs using two types of r...

متن کامل

Automated Analysis of Topic-Actor Networks on Twitter: New approach to the analysis of socio-semantic networks

Social-media data provides increasing opportunities for automated analysis of large sets of textual documents. So far, automated tools have been developed to account for either the social networks between the participants of the debates, or to analyze the content of those debates. Less attention has been paid to mapping co-occurring actors (participants) and topics (content) in online debates t...

متن کامل

Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks

Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2018